3.151 \(\int \frac{a+a \cos (c+d x)}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=83 \[ \frac{2 a F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{2 a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 a \sin (c+d x)}{d \sqrt{\cos (c+d x)}} \]

[Out]

(-2*a*EllipticE[(c + d*x)/2, 2])/d + (2*a*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a*Sin[c + d*x])/(3*d*Cos[c + d
*x]^(3/2)) + (2*a*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0594036, antiderivative size = 83, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {2748, 2636, 2641, 2639} \[ \frac{2 a F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{2 a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 a \sin (c+d x)}{d \sqrt{\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])/Cos[c + d*x]^(5/2),x]

[Out]

(-2*a*EllipticE[(c + d*x)/2, 2])/d + (2*a*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a*Sin[c + d*x])/(3*d*Cos[c + d
*x]^(3/2)) + (2*a*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{a+a \cos (c+d x)}{\cos ^{\frac{5}{2}}(c+d x)} \, dx &=a \int \frac{1}{\cos ^{\frac{5}{2}}(c+d x)} \, dx+a \int \frac{1}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 a \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 a \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\frac{1}{3} a \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx-a \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{2 a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 a \sin (c+d x)}{d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 6.14702, size = 444, normalized size = 5.35 \[ a \left (\frac{\csc (c) (\cos (c+d x)+1) \sec ^2\left (\frac{c}{2}+\frac{d x}{2}\right ) \left (\frac{\tan (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right ) \text{HypergeometricPFQ}\left (\left \{-\frac{1}{2},-\frac{1}{4}\right \},\left \{\frac{3}{4}\right \},\cos ^2\left (\tan ^{-1}(\tan (c))+d x\right )\right )}{\sqrt{\tan ^2(c)+1} \sqrt{1-\cos \left (\tan ^{-1}(\tan (c))+d x\right )} \sqrt{\cos \left (\tan ^{-1}(\tan (c))+d x\right )+1} \sqrt{\cos (c) \sqrt{\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}}-\frac{\frac{\tan (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right )}{\sqrt{\tan ^2(c)+1}}+\frac{2 \cos ^2(c) \sqrt{\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}{\sin ^2(c)+\cos ^2(c)}}{\sqrt{\cos (c) \sqrt{\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}}\right )}{2 d}-\frac{\csc (c) (\cos (c+d x)+1) \sec ^2\left (\frac{c}{2}+\frac{d x}{2}\right ) \sqrt{1-\sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{\sin (c) \left (-\sqrt{\cot ^2(c)+1}\right ) \sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{\sin \left (d x-\tan ^{-1}(\cot (c))\right )+1} \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \text{HypergeometricPFQ}\left (\left \{\frac{1}{4},\frac{1}{2}\right \},\left \{\frac{5}{4}\right \},\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )}{3 d \sqrt{\cot ^2(c)+1}}+\sqrt{\cos (c+d x)} (\cos (c+d x)+1) \sec ^2\left (\frac{c}{2}+\frac{d x}{2}\right ) \left (\frac{\sec (c) \sin (d x) \sec ^2(c+d x)}{3 d}+\frac{\sec (c) (\sin (c)+3 \sin (d x)) \sec (c+d x)}{3 d}+\frac{\csc (c) \sec (c)}{d}\right )\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + a*Cos[c + d*x])/Cos[c + d*x]^(5/2),x]

[Out]

a*(Sqrt[Cos[c + d*x]]*(1 + Cos[c + d*x])*Sec[c/2 + (d*x)/2]^2*((Csc[c]*Sec[c])/d + (Sec[c]*Sec[c + d*x]^2*Sin[
d*x])/(3*d) + (Sec[c]*Sec[c + d*x]*(Sin[c] + 3*Sin[d*x]))/(3*d)) - ((1 + Cos[c + d*x])*Csc[c]*HypergeometricPF
Q[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^2*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[
d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[
Cot[c]]]])/(3*d*Sqrt[1 + Cot[c]^2]) + ((1 + Cos[c + d*x])*Csc[c]*Sec[c/2 + (d*x)/2]^2*((HypergeometricPFQ[{-1/
2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan
[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 +
Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sq
rt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(2*d))

________________________________________________________________________________________

Maple [B]  time = 3.569, size = 369, normalized size = 4.5 \begin{align*}{\frac{2\,a}{3\,d}\sqrt{- \left ( -2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 2\,\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+6\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-12\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}\cos \left ( 1/2\,dx+c/2 \right ) -\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) -3\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +8\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 4\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}-4\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) ^{-1} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)/cos(d*x+c)^(5/2),x)

[Out]

2/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)^2
+1)/sin(1/2*d*x+1/2*c)^3*(2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*
x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+6*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2
)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2-12*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-(2*sin(1/2*d*x+
1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*(sin(1/2*d*x+1/2*c)^2)^
(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*
x+1/2*c))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))/cos(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)/cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{\frac{5}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))/cos(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

integral((a*cos(d*x + c) + a)/cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))/cos(d*x+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))/cos(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)/cos(d*x + c)^(5/2), x)